Menu

This is part two of a seven-part series of blog entries about the benefits of specifying and building with manufacturer-tested and warrantied wall systems compared to specifying individual components. Benefits include a much faster design and specification process, proven component compatibility, faster component installation and better performance, plus the peace of mind that comes from knowing all components are proven compatible and will perform as specified. Part two includes an introduction to moisture management, including the definition and functions of water resistive barriers and air barriers. Part three will continue the discussion of water resistive barriers with a look at vapor barriers.

Moisture management
Moisture management means not only getting water out of the wall, but also allowing air into the wall so it can dry quickly and completely. Since water infiltration poses a significant danger to walls, it is wise to take a redundant approach to moisture management. Redundancy means there are multiple planes of defense against moisture intrusion.

These multiple planes include first the watershed at the face of the cladding or veneer. Behind that is an air space encouraging water to drain out of the wall, breaking the directly connecting path for water to enter the wall. The third redundancy is the use of a highly water-resistant, continuous insulation layer such as extruded polystyrene (XPS), which will shed rather than absorb any water that makes it to the board’s face. (Another insulation option would be polyisocyanurate [polyiso]. Expanded polystyrene [EPS], sprayed polyurethane foam [SPF], and mineral wool could also be used as continuous insulation, but they are not as water-resistant as XPS.) The final line of defense is the water-resistive barrier itself, often installed behind the continuous insulation and over the exterior-grade gypsum sheathing. All the redundant layers are a natural part of masonry veneer construction.

Water-resistive barrier
Air- and water-resistive barriers are often a single product, the same layer in the wall which resists bulk water penetration and wind-driven rain penetrating the exterior cladding. This contrasts with vapor, which either enters the wall system by permeation or is carried into it by air leakage. In a complete wall system, depending on the regional design considerations, the functions of the air barrier, vapor barrier, and WRB are sometimes combined in one product—frequently, a liquid product that is roller- or spray-applied. Greater efficiencies can be achieved if only one trade is involved in applying the all-in-one type of product instead of multiple trades applying each of the air-, vapor-, and water-resistive barriers.

Air barriers
Air barriers have a strong influence on energy efficiency. It is estimated air leakage is responsible for about six percent of total energy used by commercial buildings in the U.S. About 15 percent of primary energy consumption in commercial buildings attributable to fenestration and building envelope components in 2010 was due to air leakage. (For more, visit www.airbarrier.org/wp-content/uploads/2017/06/Buildings-XIII_OnlineAirtightnessCalculator_V5.pdf[3].) Air barriers are often also weather-protective and water-resistant. They allow the building envelope to prevent accumulation of water in the building and establish a drainage plane inside the wall.

Be sure to come back to part three of this blog to learn about vapor barriers.

Leave a Reply

Your email address will not be published. Required fields are marked *